

Reproducible Science - Automation

Tutorial on creating a reproducible python package.

Contents:

	Introduction
	Module Learning Objectives

	Why is this important?

	Requirements

	Deploying An Application
	Setup Tapis CLI

	Docker CLI Tangent

	Copy an Application from Github

	Find deploymentPath

	Edit the app.ini file

	Deploy the Application

	Deploying an Actor
	Copy a Reactor from Github

	Edit actor.ini and config.yml

	Deploy the Actor

	Create a FastQC Folder

	Create File System Notifications

	Upload and Test

	Troubleshooting
	Notifications

	Reactor

	Application

Reproducible Science

	Main [https://tacc-reproducible-science.readthedocs.io/en/latest/]

	Introduction to Using High Performance Computing [https://tacc-reproducible-intro-hpc.readthedocs.io/en/latest/]

	Git [https://tacc-reproducible-git.readthedocs.io/en/latest/]

	Containers [https://containers-at-tacc.readthedocs.io/en/latest/]

Introduction

This tutorial will teach you how to automate your data analysis using TAPIS.

Module Learning Objectives

In this example, we will show you how to setup automated analysis that is triggered when a file is uploaded to TACC.

Participants are strongly encouraged to follow along on the command line.
After completing this module, participants should be able to:

	Create a TAPIS notification when files are uploaded to a specific location

	Trigger an Abaco actor in response to a notification

	Use an Abaco actor to submit an job to an Application

And we’re going to work backwards, first creating the tpp, then the actor,
and finally the notification.

Why is this important?

As you develop your computational skills, you will find that these skill are
in high demand.
Basic operations like moving files, interpreting metadata, initiating scripts,
and formatting outputs will take up and inordinate amount of your time and are boring.
If you can standardize your process for data ingest, you can automate the boring parts of your work.
And can instead devote more time to interpreting your analysis and working on a new, improved version of your pipeline.
Moreover, automating analysis will standardize the processing of your data, so in 6 months from now when
your computational results have been verified experimentally
you can go look back at what version of the application was run, what
the parameters were, and write your methods section accordingly. Instead of
having to guess or remember what you did, you can just check the records.

Don’t underestimate the time-saving value of automation! Check out this informative chart from XKCD [http://xkcd.com]

[image: _images/is_it_worth_the_time.png]
This module is about 90 minutes, so if this process shaves 30 seconds off of something
you do once a week, or shaves 30 minutes off something you do once a year, then
it’s worth the time investment!

Requirements

	Accounts

	GitHub [https://github.com/]

	Docker Hub Account [https://hub.docker.com/]

	Software

	Python 3

	git

	python pip

	Tapis CLI [https://tapis-cli.readthedocs.io/en/latest/getting-started/installing.html]

	Docker CE [https://www.docker.com/community-edition]

	Storage and Execution systems setup from the TAPIS module [https://tacc.github.io/summer-institute-2020-tapis/block1/tapis-systems]

Deploying An Application

We’re going to take some of what we’ve learned from best practices and put it into, well, practice.
Apps deploy is a CLI command that will build a docker container, push it to dockerhub,
upload your app asset bundle to a deploymentSystem, and register your app on
an executionSystem all in a single step.
Apps deploy is a single command that replaces:

docker build -t $DOCKER_USERNAME/$DOCKER_REPO:$DOCKER_TAG -f Dockerfile
docker push $DOCKER_USERNAME/$DOCKER_REPO:$DOCKER_TAG
tapis files upload agave://$DEPLOYMENT_SYSTEM/$DEPLOYMENT_PATH/ runner.sh
tapis apps create -F app.json

And we plan on adding even more in the future! Namely an automatic upload to GitHub
so there’s a source controlled snapshot of each deployment.

Setup Tapis CLI

Let’s go ahead and install the TAPIS CLI on your host system:

pip install tapis-cli

And re-run:

tapis auth init

Or, if you want to be clever, move over the authentication directory we created last week:

cp -R ~/.tapis ~/.agave

To check Tapis is setup correctly, you can run:

tapis systems search --public eq false

and you should see the storage and executions systems we setup last week.

Docker CLI Tangent

You might be wondering: “Can I just re-use the TAPIS container the same way we did last week?”.
And yes, you can, but there are some caveats. See this tangent for more info.

Copy an Application from Github

Let’s create a Tapis app to perform some analysis.
For this example we’ll create a fastqc application that is triggered when .fastq
files are uploaded to a certain directory, but you can use any application or file type
for this.

You can clone the fastqc example app from here:

git clone https://github.com/JoshuaUrrutia/fastqc_app.git
cd fastqc_app

Or, if you’d like, you’re welcome to use application that was created last week:
https://tacc.github.io/summer-institute-2020-tapis/block2/apps/

Find deploymentPath

Remember the storage system we created last week?

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	 {
 "id": "UPDATEUSERNAME.stampede2.storage",
 "name": "Storage system S2",
 "status": "UP",
 "type": "STORAGE",
 "description": "Storage system for TACC cloud storage on S2",
 "site": "www.tacc.utexas.edu",
 "public": false,
 "default": true,
 "storage": {
 "host": "stampede2.tacc.utexas.edu",
 "port": 22,
 "protocol": "SFTP",
 "rootDir": "/",
 "homeDir": "/work/dir../UPDATEUSERNAME/stampede2",
 "auth": {
 "username": "UPDATEUSERNAME",
 "publicKey":"paste public key here",
 "privateKey":"paste private key here",
 "type": "SSHKEYS"
 }
 }
 }

By default our write operations when we run tapis apps deploy will write to
the rootDir above. If you plan on deploying lots of apps, it’s a good idea
to redefine the rootDir on your system to be a directory
where you have write access, for example replacing the rootDir with your
homeDir: /work/dir../UPDATEUSERNAME/stampede2. This will simplify the
structure of your app.ini file, and you won’t have to lookup
or remember your directory number when listing and uploading files.

But, since this system is already created, we’ll just grab the
absolute path to the homeDir directory where we have write access.

To get a full listing of your system, run:

tapis systems show -f json $USERNAME.stampede2.storage

And look for the "homeDir" key in the json response:

"homeDir": "/work/05369/urrutia/stampede2/"

Ok and now we’ll create a directory called apps where we’ll store all our app bundles.

tapis files mkdir agave://urrutia.stampede2.storage/work/05369/urrutia/stampede2/ apps
tapis files mkdir agave://$USERNAME.stampede2.storage/$HOME_DIR apps

Edit the app.ini file

Replace the docker username and storage_path in the app.ini, with your docker username
and your homeDir (the location on your storage system where you have write access).

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	[app]
name = fastqc
label = fastqc
description = FastQC app to assess fastq quality
version = 0.11.9
storage_system = stampede2.storage
storage_path = /work/05369/urrutia/stampede2/
hpc_system = stampede2.execution
bundle = assets

[docker]
dockerfile = Dockerfile
namespace = jurrutia
repo = fastqc_app
tag = 0.11.9

[env]

[git]
branch = main

The contents of the app.ini file will be injected into your app definition (app.json):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

	{
 "name": "{{ agave.username }}-{{ app.name }}",
 "version": "{{ app.version }}",
 "executionType": "HPC",
 "executionSystem": "{{ agave.username }}.{{ app.hpc_system}}",
 "parallelism": "SERIAL",
 "deploymentPath": "{{ app.storage_path}}/apps/{{ app.name }}-{{ app.version }}",
 "deploymentSystem": "{{ agave.username }}.{{ app.storage_system}}",
 "defaultProcessorsPerNode": 1,
 "defaultNodeCount": 1,
 "defaultQueue": "normal",
 "label": "FastQC",
 "modules": ["load tacc-singularity"],
 "shortDescription": "{{ app.description }}",
 "templatePath": "runner-template.sh",
 "testPath": "tester.sh",
 "inputs": [
 {
 "id": "fastq",
 "value": {
 "default": "agave://data.iplantcollaborative.org/urrutia//sample/reads1.fastq.gz",
 "visible": true,
 "required": true
 },
 "semantics": {
 "ontology": [
 "http://edamontology.org/format_1930"
]
 },
 "details": {
 "label": "FASTQ sequence file"
 }
}
],
 "parameters": [{
 "id": "CONTAINER_IMAGE",
 "value": {
 "default": "{{ docker.organization }}/{{ docker.repo }}:{{ docker.tag }}",
 "description": "Container Image. Do not edit.",
 "type": "string",
 "visible": false,
 "required": true
 }
 }],
 "outputs": []
}

Deploy the Application

All that’s left now is to deploy the application from the FastQC repo:

tapis apps deploy

Which should print out a table like this:

+--------+---+
| stage | message |
+--------+---+
build	Step 1/4 : FROM python:3.8
build	---> ea8c3fb3cd86
build	Step 2/4 : RUN apt-get update && apt-get upgrade -y && apt-get install wget -y && apt-get install zip -y && apt-get install default-jre -y
build	---> Using cache
build	---> f0f2bd1f3194
build	Step 3/4 : RUN wget https://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.9.zip && unzip fastqc_v0.11.9.zip && rm fastqc_v0.11.9.zip && chmod +x FastQC/fastqc
build	---> Using cache
build	---> 3bea8add49b6
build	Step 4/4 : ENV PATH "/FastQC/:$PATH"
build	---> Using cache
build	---> cfafe349377a
build	Successfully built cfafe349377a
build	Successfully tagged jurrutia/fastqc_app:0.11.9
push	The push refers to repository [docker.io/jurrutia/fastqc_app]
push	0.11.9: digest: sha256:4ee48dae892538f83b69d6a1a7dbf099c51d3d032e44d0241518984897b5274f size: 2642
upload	assets/runner-template.sh
upload	assets/tester.sh
upload	assets/_lib/CONTAINER_IMAGE
upload	assets/_lib/extend-runtime.sh
create	Created Tapis app urrutia-fastqc-0.11.9 revision 1
+--------+---+

Deploying an Actor

	What is an actor? See more info in our documentation:

	
	Abaco documentation [https://tacc-cloud.readthedocs.io/projects/abaco/en/latest/]

	Abaco swagger guide [https://tacc.github.io/abaco-live-docs/]

Basically a Tapis actor is a script, that lives in the cloud, and does something for you. It’s not
for compute intensive jobs, that’s what apps are for, it’s designed to be quick,
responsive, and lightweight.

We’re going to deploy an actor that will receive a notification when a file is uploaded,
create a Tapis job.json, and submit that job to our FastQC application.

Copy a Reactor from Github

Clone a Abaco reactor I created to submit FastQC jobs:

git clone https://github.com/JoshuaUrrutia/fastqc_router_reactor.git

Edit actor.ini and config.yml

We’ll need to make edits to actor.ini so that it points to your dockerhub username:

	1
2
3
4
5
6
7
8
9

	[actor]
name = fastqc_router
token = True

[docker]
dockerfile = Dockerfile
namespace = jurrutia
repo = fastqc_router
tag = 0.2

And change the name of the app in config.yml, so it matches your app id. And
change the email address there so the notification is sent to your email:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

logs:
 level: DEBUG
 token: ~
fastqc:
 appId: urrutia-fastqc-0.11.9
 name: fastqc_test
 archive: true
 archivePath: ""
 archiveSystem: ""
 inputs:
 fastq: ""
 notifications:
 -
 event: FINISHED
 url: your@email.com

Now we create an empty secrets.json file. It’s just empty in this example, but
if you had passwords or credentials you wanted to be available in your actor, you
could add those to the secrets.json. It is included in the .gitignore file for this
repo so you don’t accidentally push a password to github.

cp secrets.json.sample secrets.json

Deploy the Actor

All that’s left is to deploy our reactor:

tapis actors deploy

You should see a response like:

Building jurrutia/fastqc_router:0.1
Finished (27932 msec)
Pushing jurrutia/fastqc_router:0.1
Finished (9354 msec)
+--------+---+
| stage | message |
+--------+---+
build	Step 1/1 : FROM jurrutia/reactors:python2-edge
build	# Executing 5 build trigger
build	s
build	---> Running in 34bf66e2e455
build	You must give at least one requirement to install (see "pip help install")
build	Removing intermediate container 34bf66e2e455
build	---> ca9ae97aef39
build	Successfully built ca9ae97aef39
build	Successfully tagged jurrutia/fastqc_router:0.1
push	The push refers to repository [docker.io/jurrutia/fastqc_router]
push	0.1: digest: sha256:844f0ce2de5e03f1f15fedb64b7f5354bf64da453a18c87c6cb5c9981e6e8991 size: 6978
create	Created Tapis actor X4blX3Ez65qQZ
cache	Cached actor identifier to disk
+--------+---+

Copy your actor id (X4blX3Ez65qQZ in the above example).
If you forget the id, you can always list out your actors with tapis actors list.

Create a FastQC Folder

Now we’ll create the fastqc folder on our storage system. After we create our
notification, any file that is uploaded here will be analyzed automatically by
our FastQC app!

tapis files mkdir agave://urrutia.stampede2.storage/work/05369/urrutia/stampede2 fastqc
tapis files mkdir agave://$USERNAME.stampede2.storage/$HOME_DIR fastqc

Create File System Notifications

Now you’re ready to create a file system notification.
This notification will pass a message to the fastqc_router_reactor when a file
is uploaded to the fastqc directory on your storage system. The fastqc_router_reactor takes
this notification, crafts a job.json, and submits a job to the fastqc_app.
We’ve created a python wrapper to help setup the file system notifications,
you can download the python scripts here:

git clone https://github.com/JoshuaUrrutia/abaco_notifications.git
cd abaco_notifications

From the abaco_notifications directory, you can run add_notify_reactor.py to
setup a notification. For example:

python add_notify_reactor.py urrutia.stampede2.storage /work/05369/urrutia/stampede2/fastqc X4blX3Ez65qQZ
python add_notify_reactor.py $AGAVE_SYSTEM_NAME $PATH_TO_DIRECTORY $ACTOR_ID

If it runs successfully your response should look like:

assocationIds = 8216966626126028310-242ac112-0001-002
notification id: 18251060861323945066-242ac116-0001-011
notification url: https://portals-api.tacc.utexas.edu/actors/v2/X4blX3Ez65qQZ/messages?x-nonce=PORTALS_baTEq5E5oylx

If there are incompatibilities with your version of python you can also use a containerized version of add_notify_reactor.py:

docker run --rm -it \
 -v ${HOME}/.agave:/root/.agave \
 jurrutia/add_notify_reactor:0.1 \
 python /opt/add_notify_reactor.py \
 $AGAVE_SYSTEM_NAME \
 $PATH_TO_DIRECTORY \
 $ACTOR_ID

And you can see all your notification using the notifications endpoint:

tapis notifications list

Upload and Test

Now the only thing left to do is to test and see if our
upload -> notification -> reactor -> app
chain is functioning.

Upload a fastq file to your FastQC directory (you can find a copy of this file in
the fastqc_app/tests/ repo):

tapis files upload agave://urrutia.stampede2.storage/work/05369/urrutia/stampede2/fastqc reads1.fastq.gz
tapis files upload agave://$SYSTEM/$PATH/ $FILE

Now that we’ve uploaded lets see if our actor was triggered:

tapis actors execs list $ACTOR_ID

The response should look like:

urrutia$ tapis actors execs list X4blX3Ez65qQZ
+---------------+----------+
| executionId | status |
+---------------+----------+
| AqDao7YgEYZ6Z | COMPLETE |
+---------------+----------+

If you want to see the logs from your actor execution you can run:

tapis actors execs logs $ACTOR_ID $EXECUTION_ID

Finally, let’s check to see if a job was submitted to our application:

tapis jobs list
+--+--------------------------------+----------+
| id | name | status |
+--+--------------------------------+----------+
| 485458bc-335d-4d05-ae30-70de2583b6d5-007 | fastqc_test | FINISHED |
+--+--------------------------------+----------+

And go ahead and download the outputs of that job:

tapis jobs outputs download 485458bc-335d-4d05-ae30-70de2583b6d5-007
cd 485458bc-335d-4d05-ae30-70de2583b6d5-007
tapis jobs outputs download $JOB_ID
cd $JOB_ID
open reads1_fastqc.html

Congratulations, you successfully automated part of your workflow with Tapis!
But there is no reason to stop here, you can add a notification to your FastQC jobs
to trigger a new reactor (and perform an alignment maybe?), and build an entirely
automated workflow by chaining together reactors and apps.

Troubleshooting

Notifications

If the reactor never executed, you can check the notifications
are working by posting notifications to PostBin using the
add_notify_requestbin.py script in the abaco_notifications directory:

python add_notify_requestbin.py $AGAVE_SYSTEM_NAME $PATH_TO_DIRECTORY
assocationIds = 344770698063965720-242ac112-0001-002
notification id: 8583029518113566230-242ac118-0001-011
notification url: https://postb.in/b/1595427632961-4801140406634

You can re-upload the file and check the requestbin url to see if it receives the notification:

tapis files upload agave://urrutia.stampede2.storage/work/05369/urrutia/stampede2/fastqc reads1.fastq.gz
tapis files upload agave://$SYSTEM/$PATH/ $FILE

You can go to the PostBin URL to see all the requests, and to get more information about
a specific request you can copy/paste the Request ID into a browser in this format:

https://postb.in/api/bin/1595427632961-4801140406634/req/1595427686559-6457259773742
https://postb.in/api/bin/$BIN_ID/req/$REQUEST_ID

[image: _images/postbin.png]
Added to many notificatons? You can delete them individually with:

tapis notifications delete $NOTIFICATON_ID

Or, if you just want to git rid of all your notifications, you can run:

tapis notifications list -c id -f value | xargs -n 1 tapis notifications delete

Reactor

If the reactor executed, but did not launch your app, you can check the reactor logs:

tapis actors execs logs $ACTOR_ID $EXECUTION_ID

You can then edit your reactor.py or config.yml as needed, and redeploy the actor.
If you want to redeploy your reactor but don’t want to re-create
the notification, you can deploy your reactor to the same actor id with:

tapis actors deploy -I X4blX3Ez65qQZ
tapis actors deploy -I $ACTOR_ID

Application

If the app launched, but you are not getting the output you expect,
you can check the app logs. Run jobs-list to find the relevant job_ID, then you can run:

tapis jobs outputs download 485458bc-335d-4d05-ae30-70de2583b6d5-007
tapis jobs show $JOB_ID
and check the lastStatusMessage
tapis jobs outputs download $JOB_ID
and check the .err and .our files

Index

Docker CLI

Alternatively you can re-use the TAPIS container the same way we did last week:

docker run --rm -it \
 -v ${PWD}:/work \
 -v ${HOME}/.agave:/root/.agave \
 -v /var/run/docker.sock:/var/run/docker.sock \
 tacc/tapis-cli:latest \
 bash

	Option

	Description

	–rm

	Automatically remove the container when it exits

	-i, –interactive

	Keep STDIN open even if not attached

	-t, –tty

	Allocate a pseudo-TTY

	-v, –volume list

	Bind mount a volume

But I wouldn’t recommend this for several reasons.
First you will be limited to writing only to subdirectories under your current directory $PWD,
because of the local:container volume mount specified in -v ${PWD}:/work.

Moreover, because part of the deploy process is to build a docker container, we would
be building a container inside of a container. Which could be useful in some cases, but
is somewhat contrived.
Docker in Docker [https://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/]
To avoid this we can just mount our system docker into our container, so we’re
using the same docker engine to build the container inside our container.
Notice there is an extra volume mount /var/run/docker.sock:/var/run/docker.sock.
So our system docker engine is mounted inside the container.

Back to Apps Deploy

Version Control

Module Learning Objectives

This module will be fully interactive. Participants are strongly encouraged to follow along on the command line. Access to a TACC Training VM and a GitHub account [https://github.com/join] are required. After completing this module, participants should be able to:

	Describe the importance of reproducibility in Domain Sciences

	Create a new Git repository hosted on GitHub

	Clone a repository, commit and push changes to the repository

	Track the history of changes in files in a Git repository

	Work collaboratively with others on the content in a Git repository

	Perform basic branching, forking, and tagging operations

Why is Reproducibility Important?

Reproducibility gives validity to science. To present a scientific result as valid, the assumption must be that if you or any other person reruns the same experiments under the same conditions, they will arrive at the same result. Without this assumption, results become more or less an observational data point. In order to reproduce / replicate a typical wet-lab science experiment, you may need to know:

	Experimental conditions

	Reagent(s) used

	Equipment used

	Instrument(s) used

	Incubation times

	Dose / concentration

	Cell strains

	… etc.

What must be known to reproduce an experiment in computational sciences?

	Input / reference data

	Software identity

	Software version

	Number of replicas

	Parameters

	Configurations

	When something was run

	Exact version of code used

	Platform / OS

How can we Achieve Reproducibility in Computational Science?

Version control can be considered the “lab notebook of the digital world”. Version control systems are a set of tools used to track and manage changes in digital information. A form of version control you are probably already familiar with is “Track Changes” feature in Microsoft Word. It is useful for some applications, but long-term provenance is difficult.

[image: Sophistication Levels]
In this workshop, we will look at the version control system Git. Of the several version control systems available (Git, Subversion, CVS, Mercurial), our group mostly uses Git, and we generally find that it is:

	Easy to collaborate

	Conveniently supports multiple concurrent versions (branches)

	Tag releases or snapshots in time

	Restore previous versions of files

	What it lacks in user-friendliness it makes up for in good documentation

	Intuitive web platforms available

GitHub is a web platform where you can host and share Git repositories (“repos”). Repositories can be public or private (things like action minutes and packages are free for public repos). Much of what we will do with this section requires you to have a GitHub account.

What can you do with Git / GitHub?

GitHub and version control with Git are not just for useful for scientific reproducibility. There are many other applications in the scientific lab that make Git an attractive tool to learn:

	Develop software collaboratively [https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow]

	Disseminate a tutorial [https://github.com/ancantu/SCICLD2019]

	Centralize lab protocols [https://github.com/search?q=lab+protocols]

	Write a manuscript for publication [https://livecomsjournal.github.io/about/paper_code/]

	Create and host a personal website [http://jmcglone.com/guides/github-pages/]

Reference for Git Material

Daisie Huang and Ivan Gonzalez (eds): “Software Carpentry: Version
Control with Git.” Version 2016.06, June 2016,
https://github.com/swcarpentry/git-novice, 10.5281/zenodo.57467.

 _static/comment-bright.png

_static/TACC-White-No-Mask.png
j SR
RSN TAN.

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/is_it_worth_the_time.png
HOW LONG CAN YOU WORK ON MAKING A ROUTINE. TASK MORE

EFRCENT BEFORE YOURE SPENDING MORE TiME THAN YOU SAVE?
(PCROSS FIVE YEARS)

—————HOW OFTEN YOU DO THE TRSK —————
Foar Foar DALY WEEKY MONFLY YEPRRY

v | seios
5 seroos | (Boms| 12vous | 2005 |, B | s | sl

Hr% MIN%VE’)

_images/postbin.png
c

PostBin

& posth

x +
1595427632961-48011404066:

cookie: _ga=GA1.2.2095056656.1595426934;
_gid=GA1.2.577195375.1595426934

POST /15095427632961-4801140406634

IReq '1595427686559-6457259773742' : 129.114.97.125]

Headers Query

x-real-ip: 129.114.97.125
host: postb.in

connection: close

content-length: 834

x-agave-delivery: 6871957497060126230-242ac119-
0001-042

user-agent: Agave-Hookbot/null

x-agave-notification: 8583029518113566230-242ac118-
0001-011

content-type: application/json

x-newrelic-id: UA4CVI9RGWIJUINXAQgG
x-newrelic-transaction:

PxQPV1JVXAUCVFNaB1dTAIWGFBBEBWSRVU4aWgaMAIYFVwITCVFVBEEOAENKQV4BUIBZWwCJFTs=

accept-encoding: gzip deflate

Body

file: [object Object]

POST /15095427632961-4801140406634

[Req '1505427686654-5513850798666' : 129.114.97.125]

Headere Onens

Bady

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Reproducible Science - Automation

 		
 Introduction

 		
 Module Learning Objectives

 		
 Why is this important?

 		
 Requirements

 		
 Deploying An Application

 		
 Setup Tapis CLI

 		
 Docker CLI Tangent

 		
 Copy an Application from Github

 		
 Find deploymentPath

 		
 Edit the app.ini file

 		
 Deploy the Application

 		
 Deploying an Actor

 		
 Copy a Reactor from Github

 		
 Edit actor.ini and config.yml

 		
 Deploy the Actor

 		
 Create a FastQC Folder

 		
 Create File System Notifications

 		
 Upload and Test

 		
 Troubleshooting

 		
 Notifications

 		
 Reactor

 		
 Application

_static/up-pressed.png

_static/up.png

_static/plus.png

