
Reproducible Science - Automation

Jul 22, 2020

Contents:

1 Introduction 3
1.1 Module Learning Objectives . 3
1.2 Why is this important? . 3
1.3 Requirements . 4

2 Deploying An Application 5
2.1 Setup Tapis CLI . 5
2.2 Docker CLI Tangent . 6
2.3 Copy an Application from Github . 6
2.4 Find deploymentPath . 6
2.5 Edit the app.ini file . 7
2.6 Deploy the Application . 8

3 Deploying an Actor 11
3.1 Copy a Reactor from Github . 11
3.2 Edit actor.ini and config.yml . 11
3.3 Deploy the Actor . 12
3.4 Create a FastQC Folder . 13
3.5 Create File System Notifications . 13
3.6 Upload and Test . 14

4 Troubleshooting 17
4.1 Notifications . 17
4.2 Reactor . 18
4.3 Application . 18

i

ii

Reproducible Science - Automation

Tutorial on creating a reproducible python package.

Contents: 1

Reproducible Science - Automation

2 Contents:

CHAPTER 1

Introduction

This tutorial will teach you how to automate your data analysis using TAPIS.

1.1 Module Learning Objectives

In this example, we will show you how to setup automated analysis that is triggered when a file is uploaded to TACC.

Participants are strongly encouraged to follow along on the command line. After completing this module, participants
should be able to:

• Create a TAPIS notification when files are uploaded to a specific location

• Trigger an Abaco actor in response to a notification

• Use an Abaco actor to submit an job to an Application

And we’re going to work backwards, first creating the tpp, then the actor, and finally the notification.

1.2 Why is this important?

As you develop your computational skills, you will find that these skill are in high demand. Basic operations like
moving files, interpreting metadata, initiating scripts, and formatting outputs will take up and inordinate amount of
your time and are boring. If you can standardize your process for data ingest, you can automate the boring parts of
your work. And can instead devote more time to interpreting your analysis and working on a new, improved version
of your pipeline. Moreover, automating analysis will standardize the processing of your data, so in 6 months from
now when your computational results have been verified experimentally you can go look back at what version of the
application was run, what the parameters were, and write your methods section accordingly. Instead of having to guess
or remember what you did, you can just check the records.

Don’t underestimate the time-saving value of automation! Check out this informative chart from XKCD

3

http://xkcd.com

Reproducible Science - Automation

This module is about 90 minutes, so if this process shaves 30 seconds off of something you do once a week, or shaves
30 minutes off something you do once a year, then it’s worth the time investment!

1.3 Requirements

• Accounts

– GitHub

– Docker Hub Account

• Software

– Python 3

– git

– python pip

– Tapis CLI

– Docker CE

– Storage and Execution systems setup from the TAPIS module

4 Chapter 1. Introduction

https://github.com/
https://hub.docker.com/
https://tapis-cli.readthedocs.io/en/latest/getting-started/installing.html
https://www.docker.com/community-edition
https://tacc.github.io/summer-institute-2020-tapis/block1/tapis-systems

CHAPTER 2

Deploying An Application

We’re going to take some of what we’ve learned from best practices and put it into, well, practice. Apps deploy is
a CLI command that will build a docker container, push it to dockerhub, upload your app asset bundle to a deploy-
mentSystem, and register your app on an executionSystem all in a single step. Apps deploy is a single command that
replaces:

docker build -t $DOCKER_USERNAME/$DOCKER_REPO:$DOCKER_TAG -f Dockerfile
docker push $DOCKER_USERNAME/$DOCKER_REPO:$DOCKER_TAG
tapis files upload agave://$DEPLOYMENT_SYSTEM/$DEPLOYMENT_PATH/ runner.sh
tapis apps create -F app.json

And we plan on adding even more in the future! Namely an automatic upload to GitHub so there’s a source controlled
snapshot of each deployment.

2.1 Setup Tapis CLI

Let’s go ahead and install the TAPIS CLI on your host system:

pip install tapis-cli

And re-run:

tapis auth init

Or, if you want to be clever, move over the authentication directory we created last week:

cp -R ~/.tapis ~/.agave

To check Tapis is setup correctly, you can run:

tapis systems search --public eq false

and you should see the storage and executions systems we setup last week.

5

Reproducible Science - Automation

2.2 Docker CLI Tangent

You might be wondering: “Can I just re-use the TAPIS container the same way we did last week?”. And yes, you can,
but there are some caveats. See this tangent for more info.

2.3 Copy an Application from Github

Let’s create a Tapis app to perform some analysis. For this example we’ll create a fastqc application that is triggered
when .fastq files are uploaded to a certain directory, but you can use any application or file type for this.

You can clone the fastqc example app from here:

git clone https://github.com/JoshuaUrrutia/fastqc_app.git
cd fastqc_app

Or, if you’d like, you’re welcome to use application that was created last week: https://tacc.github.io/
summer-institute-2020-tapis/block2/apps/

2.4 Find deploymentPath

Remember the storage system we created last week?

1 {
2 "id": "UPDATEUSERNAME.stampede2.storage",
3 "name": "Storage system S2",
4 "status": "UP",
5 "type": "STORAGE",
6 "description": "Storage system for TACC cloud storage on S2",
7 "site": "www.tacc.utexas.edu",
8 "public": false,
9 "default": true,

10 "storage": {
11 "host": "stampede2.tacc.utexas.edu",
12 "port": 22,
13 "protocol": "SFTP",
14 "rootDir": "/",
15 "homeDir": "/work/dir../UPDATEUSERNAME/stampede2",
16 "auth": {
17 "username": "UPDATEUSERNAME",
18 "publicKey":"paste public key here",
19 "privateKey":"paste private key here",
20 "type": "SSHKEYS"
21 }
22 }
23 }

By default our write operations when we run tapis apps deploy will write to the rootDir above. If you plan
on deploying lots of apps, it’s a good idea to redefine the rootDir on your system to be a directory where you have write
access, for example replacing the rootDir with your homeDir: /work/dir../UPDATEUSERNAME/stampede2.
This will simplify the structure of your app.ini file, and you won’t have to lookup or remember your directory
number when listing and uploading files.

But, since this system is already created, we’ll just grab the absolute path to the homeDir directory where we have
write access.

6 Chapter 2. Deploying An Application

02-docker-tangent.html
https://tacc.github.io/summer-institute-2020-tapis/block2/apps/
https://tacc.github.io/summer-institute-2020-tapis/block2/apps/

Reproducible Science - Automation

To get a full listing of your system, run:

tapis systems show -f json $USERNAME.stampede2.storage

And look for the "homeDir" key in the json response:

"homeDir": "/work/05369/urrutia/stampede2/"

Ok and now we’ll create a directory called apps where we’ll store all our app bundles.

tapis files mkdir agave://urrutia.stampede2.storage/work/05369/urrutia/stampede2/
→˓apps
tapis files mkdir agave://$USERNAME.stampede2.storage/$HOME_DIR apps

2.5 Edit the app.ini file

Replace the docker username and storage_path in the app.ini, with your docker username and your homeDir
(the location on your storage system where you have write access).

1 [app]
2 name = fastqc
3 label = fastqc
4 description = FastQC app to assess fastq quality
5 version = 0.11.9
6 storage_system = stampede2.storage
7 storage_path = /work/05369/urrutia/stampede2/
8 hpc_system = stampede2.execution
9 bundle = assets

10

11

12

13 [docker]
14 dockerfile = Dockerfile
15 namespace = jurrutia
16 repo = fastqc_app
17 tag = 0.11.9
18

19 [env]
20

21 [git]
22 branch = main

The contents of the app.ini file will be injected into your app definition (app.json):

1 {
2 "name": "{{ agave.username }}-{{ app.name }}",
3 "version": "{{ app.version }}",
4 "executionType": "HPC",
5 "executionSystem": "{{ agave.username }}.{{ app.hpc_system}}",
6 "parallelism": "SERIAL",
7 "deploymentPath": "{{ app.storage_path}}/apps/{{ app.name }}-{{ app.version }}",
8 "deploymentSystem": "{{ agave.username }}.{{ app.storage_system}}",
9 "defaultProcessorsPerNode": 1,

10 "defaultNodeCount": 1,
11 "defaultQueue": "normal",

(continues on next page)

2.5. Edit the app.ini file 7

Reproducible Science - Automation

(continued from previous page)

12 "label": "FastQC",
13 "modules": ["load tacc-singularity"],
14 "shortDescription": "{{ app.description }}",
15 "templatePath": "runner-template.sh",
16 "testPath": "tester.sh",
17 "inputs": [
18 {
19 "id": "fastq",
20 "value": {
21 "default": "agave://data.iplantcollaborative.org/urrutia//sample/reads1.fastq.gz",
22 "visible": true,
23 "required": true
24 },
25 "semantics": {
26 "ontology": [
27 "http://edamontology.org/format_1930"
28]
29 },
30 "details": {
31 "label": "FASTQ sequence file"
32 }
33 }
34],
35 "parameters": [{
36 "id": "CONTAINER_IMAGE",
37 "value": {
38 "default": "{{ docker.organization }}/{{ docker.repo }}:{{ docker.tag }}",
39 "description": "Container Image. Do not edit.",
40 "type": "string",
41 "visible": false,
42 "required": true
43 }
44 }],
45 "outputs": []
46 }

2.6 Deploy the Application

All that’s left now is to deploy the application from the FastQC repo:

tapis apps deploy

Which should print out a table like this:

+--------+--
→˓--
→˓-----------------------------+
| stage | message
→˓

→˓ |
+--------+--
→˓--
→˓-----------------------------+
| build | Step 1/4 : FROM python:3.8
→˓

→˓ |
(continues on next page)

8 Chapter 2. Deploying An Application

Reproducible Science - Automation

(continued from previous page)

| build | ---> ea8c3fb3cd86
→˓

→˓ |
| |
→˓

→˓ |
| build | Step 2/4 : RUN apt-get update && apt-get upgrade -y && apt-get
→˓install wget -y && apt-get install zip -y && apt-get install default-jre -y
→˓ |
| build | ---> Using cache
→˓

→˓ |
| |
→˓

→˓ |
| build | ---> f0f2bd1f3194
→˓

→˓ |
| |
→˓

→˓ |
| build | Step 3/4 : RUN wget https://www.bioinformatics.babraham.ac.uk/projects/
→˓fastqc/fastqc_v0.11.9.zip && unzip fastqc_v0.11.9.zip && rm fastqc_v0.11.9.
→˓zip && chmod +x FastQC/fastqc |
| build | ---> Using cache
→˓

→˓ |
| |
→˓

→˓ |
| build | ---> 3bea8add49b6
→˓

→˓ |
| |
→˓

→˓ |
| build | Step 4/4 : ENV PATH "/FastQC/:$PATH"
→˓

→˓ |
| build | ---> Using cache
→˓

→˓ |
| |
→˓

→˓ |
| build | ---> cfafe349377a
→˓

→˓ |
| |
→˓

→˓ |
| build | Successfully built cfafe349377a
→˓

→˓ |
| |
→˓

→˓ |
(continues on next page)

2.6. Deploy the Application 9

Reproducible Science - Automation

(continued from previous page)

| build | Successfully tagged jurrutia/fastqc_app:0.11.9
→˓

→˓ |
| |
→˓

→˓ |
| push | The push refers to repository [docker.io/jurrutia/fastqc_app]
→˓

→˓ |
| push | 0.11.9: digest:
→˓sha256:4ee48dae892538f83b69d6a1a7dbf099c51d3d032e44d0241518984897b5274f size: 2642
→˓

→˓ |
| upload | assets/runner-template.sh
→˓

→˓ |
| upload | assets/tester.sh
→˓

→˓ |
| upload | assets/_lib/CONTAINER_IMAGE
→˓

→˓ |
| upload | assets/_lib/extend-runtime.sh
→˓

→˓ |
| create | Created Tapis app urrutia-fastqc-0.11.9 revision 1
→˓

→˓ |
+--------+--
→˓--
→˓-----------------------------+

10 Chapter 2. Deploying An Application

CHAPTER 3

Deploying an Actor

What is an actor? See more info in our documentation:

• Abaco documentation

• Abaco swagger guide

Basically a Tapis actor is a script, that lives in the cloud, and does something for you. It’s not for compute intensive
jobs, that’s what apps are for, it’s designed to be quick, responsive, and lightweight.

We’re going to deploy an actor that will receive a notification when a file is uploaded, create a Tapis job.json, and
submit that job to our FastQC application.

3.1 Copy a Reactor from Github

Clone a Abaco reactor I created to submit FastQC jobs:

git clone https://github.com/JoshuaUrrutia/fastqc_router_reactor.git

3.2 Edit actor.ini and config.yml

We’ll need to make edits to actor.ini so that it points to your dockerhub username:

1 [actor]
2 name = fastqc_router
3 token = True
4

5 [docker]
6 dockerfile = Dockerfile
7 namespace = jurrutia
8 repo = fastqc_router
9 tag = 0.2

11

https://tacc-cloud.readthedocs.io/projects/abaco/en/latest/
https://tacc.github.io/abaco-live-docs/

Reproducible Science - Automation

And change the name of the app in config.yml, so it matches your app id. And change the email address there so
the notification is sent to your email:

1 ---
2 logs:
3 level: DEBUG
4 token: ~
5 fastqc:
6 appId: urrutia-fastqc-0.11.9
7 name: fastqc_test
8 archive: true
9 archivePath: ""

10 archiveSystem: ""
11 inputs:
12 fastq: ""
13 notifications:
14 -
15 event: FINISHED
16 url: your@email.com

Now we create an empty secrets.json file. It’s just empty in this example, but if you had passwords or credentials
you wanted to be available in your actor, you could add those to the secrets.json. It is included in the .gitignore
file for this repo so you don’t accidentally push a password to github.

cp secrets.json.sample secrets.json

3.3 Deploy the Actor

All that’s left is to deploy our reactor:

tapis actors deploy

You should see a response like:

Building jurrutia/fastqc_router:0.1
Finished (27932 msec)
Pushing jurrutia/fastqc_router:0.1
Finished (9354 msec)
+--------+--
→˓---------------------+
| stage | message
→˓ |
+--------+--
→˓---------------------+
| build | Step 1/1 : FROM jurrutia/reactors:python2-edge
→˓ |
| build | # Executing 5 build trigger
→˓ |
| build | s
→˓ |
| build | ---> Running in 34bf66e2e455
→˓ |
| |
→˓ |
| build | You must give at least one requirement to install (see "pip help install")
→˓ |

(continues on next page)

12 Chapter 3. Deploying an Actor

Reproducible Science - Automation

(continued from previous page)

| |
→˓ |
| build | Removing intermediate container 34bf66e2e455
→˓ |
| |
→˓ |
| build | ---> ca9ae97aef39
→˓ |
| |
→˓ |
| build | Successfully built ca9ae97aef39
→˓ |
| |
→˓ |
| build | Successfully tagged jurrutia/fastqc_router:0.1
→˓ |
| |
→˓ |
| push | The push refers to repository [docker.io/jurrutia/fastqc_router]
→˓ |
| push | 0.1: digest:
→˓sha256:844f0ce2de5e03f1f15fedb64b7f5354bf64da453a18c87c6cb5c9981e6e8991 size: 6978 |
| create | Created Tapis actor X4blX3Ez65qQZ
→˓ |
| cache | Cached actor identifier to disk
→˓ |
+--------+--
→˓---------------------+

Copy your actor id (X4blX3Ez65qQZ in the above example). If you forget the id, you can always list out your actors
with tapis actors list.

3.4 Create a FastQC Folder

Now we’ll create the fastqc folder on our storage system. After we create our notification, any file that is uploaded
here will be analyzed automatically by our FastQC app!

tapis files mkdir agave://urrutia.stampede2.storage/work/05369/urrutia/stampede2
→˓fastqc
tapis files mkdir agave://$USERNAME.stampede2.storage/$HOME_DIR fastqc

3.5 Create File System Notifications

Now you’re ready to create a file system notification. This notification will pass a message to the
fastqc_router_reactor when a file is uploaded to the fastqc directory on your storage system. The
fastqc_router_reactor takes this notification, crafts a job.json, and submits a job to the fastqc_app.
We’ve created a python wrapper to help setup the file system notifications, you can download the python scripts here:

git clone https://github.com/JoshuaUrrutia/abaco_notifications.git
cd abaco_notifications

3.4. Create a FastQC Folder 13

Reproducible Science - Automation

From the abaco_notifications directory, you can run add_notify_reactor.py to setup a notification.
For example:

python add_notify_reactor.py urrutia.stampede2.storage /work/05369/urrutia/
→˓stampede2/fastqc X4blX3Ez65qQZ
python add_notify_reactor.py $AGAVE_SYSTEM_NAME $PATH_TO_DIRECTORY $ACTOR_ID

If it runs successfully your response should look like:

assocationIds = 8216966626126028310-242ac112-0001-002
notification id: 18251060861323945066-242ac116-0001-011
notification url: https://portals-api.tacc.utexas.edu/actors/v2/X4blX3Ez65qQZ/
→˓messages?x-nonce=PORTALS_baTEq5E5oylx

If there are incompatibilities with your version of python you can also use a containerized version of
add_notify_reactor.py:

docker run --rm -it \
-v ${HOME}/.agave:/root/.agave \
jurrutia/add_notify_reactor:0.1 \
python /opt/add_notify_reactor.py \
$AGAVE_SYSTEM_NAME \
$PATH_TO_DIRECTORY \
$ACTOR_ID

And you can see all your notification using the notifications endpoint:

tapis notifications list

3.6 Upload and Test

Now the only thing left to do is to test and see if our upload -> notification -> reactor -> app chain
is functioning.

Upload a fastq file to your FastQC directory (you can find a copy of this file in the fastqc_app/tests/ repo):

tapis files upload agave://urrutia.stampede2.storage/work/05369/urrutia/stampede2/
→˓fastqc reads1.fastq.gz
tapis files upload agave://$SYSTEM/$PATH/ $FILE

Now that we’ve uploaded lets see if our actor was triggered:

tapis actors execs list $ACTOR_ID

The response should look like:

urrutia$ tapis actors execs list X4blX3Ez65qQZ
+---------------+----------+
| executionId | status |
+---------------+----------+
| AqDao7YgEYZ6Z | COMPLETE |
+---------------+----------+

If you want to see the logs from your actor execution you can run:

14 Chapter 3. Deploying an Actor

Reproducible Science - Automation

tapis actors execs logs $ACTOR_ID $EXECUTION_ID

Finally, let’s check to see if a job was submitted to our application:

tapis jobs list
+--+--------------------------------+---------
→˓-+
| id | name | status
→˓ |
+--+--------------------------------+---------
→˓-+
| 485458bc-335d-4d05-ae30-70de2583b6d5-007 | fastqc_test |
→˓FINISHED |
+--+--------------------------------+---------
→˓-+

And go ahead and download the outputs of that job:

tapis jobs outputs download 485458bc-335d-4d05-ae30-70de2583b6d5-007
cd 485458bc-335d-4d05-ae30-70de2583b6d5-007
tapis jobs outputs download $JOB_ID
cd $JOB_ID
open reads1_fastqc.html

Congratulations, you successfully automated part of your workflow with Tapis! But there is no reason to stop here,
you can add a notification to your FastQC jobs to trigger a new reactor (and perform an alignment maybe?), and build
an entirely automated workflow by chaining together reactors and apps.

3.6. Upload and Test 15

Reproducible Science - Automation

16 Chapter 3. Deploying an Actor

CHAPTER 4

Troubleshooting

4.1 Notifications

If the reactor never executed, you can check the notifications are working by posting notifications to PostBin using
the add_notify_requestbin.py script in the abaco_notifications directory:

python add_notify_requestbin.py $AGAVE_SYSTEM_NAME $PATH_TO_DIRECTORY
assocationIds = 344770698063965720-242ac112-0001-002
notification id: 8583029518113566230-242ac118-0001-011
notification url: https://postb.in/b/1595427632961-4801140406634

You can re-upload the file and check the requestbin url to see if it receives the notification:

tapis files upload agave://urrutia.stampede2.storage/work/05369/urrutia/stampede2/
→˓fastqc reads1.fastq.gz
tapis files upload agave://$SYSTEM/$PATH/ $FILE

You can go to the PostBin URL to see all the requests, and to get more information about a specific request you can
copy/paste the Request ID into a browser in this format:

https://postb.in/api/bin/1595427632961-4801140406634/req/1595427686559-6457259773742
https://postb.in/api/bin/$BIN_ID/req/$REQUEST_ID

17

Reproducible Science - Automation

Added to many notificatons? You can delete them individually with:

tapis notifications delete $NOTIFICATON_ID

Or, if you just want to git rid of all your notifications, you can run:

tapis notifications list -c id -f value | xargs -n 1 tapis notifications delete

4.2 Reactor

If the reactor executed, but did not launch your app, you can check the reactor logs:

tapis actors execs logs $ACTOR_ID $EXECUTION_ID

You can then edit your reactor.py or config.yml as needed, and redeploy the actor. If you want to redeploy
your reactor but don’t want to re-create the notification, you can deploy your reactor to the same actor id with:

tapis actors deploy -I X4blX3Ez65qQZ
tapis actors deploy -I $ACTOR_ID

4.3 Application

If the app launched, but you are not getting the output you expect, you can check the app logs. Run jobs-list to find
the relevant job_ID, then you can run:

tapis jobs outputs download 485458bc-335d-4d05-ae30-70de2583b6d5-007
tapis jobs show $JOB_ID
and check the lastStatusMessage
tapis jobs outputs download $JOB_ID
and check the .err and .our files

18 Chapter 4. Troubleshooting

	Introduction
	Module Learning Objectives
	Why is this important?
	Requirements

	Deploying An Application
	Setup Tapis CLI
	Docker CLI Tangent
	Copy an Application from Github
	Find deploymentPath
	Edit the app.ini file
	Deploy the Application

	Deploying an Actor
	Copy a Reactor from Github
	Edit actor.ini and config.yml
	Deploy the Actor
	Create a FastQC Folder
	Create File System Notifications
	Upload and Test

	Troubleshooting
	Notifications
	Reactor
	Application

